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Abstract—In this paper, we studied some consensus and group
consensus algorithms for the collective rotating motions of a team
of agents, which has been widely studied in different disciplines
ranging from physics, networks and engineering. discrete group
consensus algorithm when delay are free and consensus algorithm
with processing delays are investigated. Based on algebraic matrix
theories, graph theories and the properties of Kronecker product,
some necessary and sufficient criteria for the consensus and group
consensus are derived, where we show that both the eigenvalue
distribution of the Laplacian matrix and the Euler angle of the rotation
matrix play an important role in achieving group consensus and
consensus. Finally, simulation examples are presented to validate the
effectiveness of the theoretical results.

Keywords—Multi-agent system (MAS), Fixed topology, Consen-
sus, Group consensus, Processing delay.

I. INTRODUCTION

AS we know, a multi-agent systems consists of a num-
ber of agents who communicate with each other via

some pairwise links and aims to accomplish various control
objectives by local interactions of designated agents. The
consensus problems derive from all agents eventually reach
an agreement of interest generally determined by their initial
stats, first appear in distributed computation and automata
theory in computer science [1]. It is important to understand
the way these subsystems manage to accomplish a collec-
tive behaviour, as such phenomena are observed in nature.
These collective behaviours such as flocking, herding, and
schooling have been observed in many self-organized systems
including fish swimming in schools, birds flying in flocks
for the purpose of enhancing the foraging success, and the
flight guidance in honeybee swarms. See, for example, Vic-
sek, Czirok, Ben-Jacob, Cohen, and Shochet[2]; Vicsek [3];
Strogatz [4]; Couzin, Krause, Franks and Levin(2005)[5].Note
that the above references all consider such consensus where
the states of all agents converge to the same consensus value.
However, Due to the changes of situations or cooperative tasks,
the consensus values may be different for agents from different
sub-networks, in [6] group consensus was introduced, where
the states of all agents in the same sub-network reach the
same consistent value while there is no agreement between
any two sub-networks. group consensus problems for dynamic
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multi-agent systems were investigated by many researches [7]-
[9], in [7], By introducing double-tree-form transformations,
solve the first-order group consensus problems in networks
of dynamic agents under switching topologies and when exist
time-varying communication delays. in [8], By graph theories
and matrix theories, solve the first-order group consensus
problems of multi-agent systems with directed information ex-
change. in [9], By algebraic matrix theories, graph theories and
the properties of Kronecker product, necessary and sufficient
condition for the group consensus of multi-agent systems is
established.

The rest of this paper is organized as follows. In Sec-
tion 2, some preliminaries and the problem formulation are
introduced. group consensus protocol is proposed and the
eigenvalues as well as the corresponding eigenvectors of the
system matrix are analyzed in Section 3. consensus protocol
with delay is proposed in Section 4. Simulation results are
presented in Section 5 to demonstrate the effectiveness of
the theoretical results. Section 6 concludes this paper with
a discussion.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

In this subsection, we will review some basic concepts in
graph theory and introduce some lemmas which will be used
in this paper.

Let G = (V, E ,A) be a directed graph with a finite
nonempty set of nodes V = {v1, v2, · · · , vn}; a set of edges
E ⊆ V × V and a weighted adjacency matrix A. An edge
eij = (vj , vi) ∈ E means that node vi can receive information
from node vj . A = [aij ]n×n is defined as aij 6= 0 if eij ∈ E
and aij = 0 if eij /∈ E . Moreover, aii = 0 is assumed for
all i. A graph is called undirected if aij = aji. The neighbor
set of node vi is denoted by Ni = {vj |eij ∈ E}. For a given
network system of dynamic agents, a directed graph G will
be used to model the information communication among all
agents.

Lemma 2.1: [10] Let L be the Laplacian matrix of the
directed graph G. Then L has a simple zero eigenvalue and
all other eigenvalues have positive real parts if and only if
G has a directed spanning tree. let µi is eigenvalue of L for
i = 1, 2, · · · , n, µ1 = 0, Moreover, 0 is an eigenvalue of
L with an associated right eigenvector 1n, left eigenvector
p(nonnegative vector) satisfying L1n = 0n×1, pTL = 01×n
and pT1n = 1.

Lemma 2.2: [11] Given a rotation matrix C ∈ R3×3. Let
~a = [a1, a2, a3]T be a unit vector in the direction of rotation
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and let θ ∈ (0, 2π) be the rotation angle. Then eigenvalues
of C are c1 = 1, c2 = ejθ, c3 = e−jθ. If a2, a3 not all zero,
then we may choose the right eigenvectors of C to be %1 =
~a, %2 = [a22 + a23,−a1a2 + a3j,−a1a3 − a2j]T , %3 = %̄2, left
eigenvectors is ρ1 = %1, ρ2 = %̄2/|%2|2, ρ3 = %̄3/|%3|2, where
j =

√
−1 is the imaginary unit , ·̄ is the conjugate of a

complex number. Moreover, %Tl ρl = 1, l = 1, 2, 3.
Lemma 2.3: [12],[13] Suppose that U ∈ Rp×p, V ∈ Rq×q,

U has the eigenvalues βi with associated eigenvectors fi ∈
Cp, i = 1, · · · , p,and V has the eigenvalues αj with associated
eigenvectors gi ∈ Cq, i = 1, · · · , q, then the pq eigenvalues of
U ⊗ V are βiαj with associated eigenvectors of fi ⊗ gi,i =
1, · · · , p, j = 1, · · · , q.

Lemma 2.4: ([14]) Given a complex coefficient polynomial
of order two as follows:

h(s) = s2 + c1s+ c2, (1)

where ck = ak + jbk, ak, bk are real constants for k = 1, 2.
then,h(s) is stable if and only if a1 > 0 and a21a2 +b2(a1b1−
b2) > 0.

B. Problem formulation

Suppose that the network system under consideration con-
sists of n + m agents. Each agent is regarded as a node in a
directed graph G. To analyze the group consensus problem,
without loss of generality, we divide the communication
network into two sub-networks, where the first n agents belong
to the first sub-network and the remaining m agents belong to
the second sub-network. G1 and G2 are used to model the in-
formation communication of these two subnetworks. Suppose
that each agent is described by the following dynamics:

Ri(k + 1) = Ri(k) + Tµi(k).i = 1, 2, · · · , n+m (2)

where Ri(k) ∈ R3 and µi(k) ∈ R3 are the position and control
input of agent i at time instant kT , respectively; T is the
sampling period.

Denote

R1(k) = [R1(k), R2(k), · · · , Rn(k)]T

R2(k) = [Rn+1(k), Rn+2(k), · · · , Rn+m(k)]T

L1 = {1, 2, · · · , n},L2 = {n+ 1, n+ 2, · · · , n+m},

V1 = {v1, v2, · · · , vn},V2 = {vn+1, vn+2, · · · , vn+m},

L = L1

⋃
L2, R(k) = [R1(k)T , R2(k)T ]T ,V = V1

⋃
V2

Ni,1 = {vj ∈ V1|eij ∈ E},Ni,2 = {vj ∈ V2|eij ∈ E}.

then Ni = Ni,1
⋃
Ni,2,Gk = (Vk, Ek,Ak), where Ek =

{eij |i, j ∈ Lk} and Ak inherit A, k = 1, 2 Therefore, Ni,k can
been seen as the neighbor set of agent i in Gk, k = 1, 2. Note
that E1

⋃
E2 is a subset of E as information transition exists not

only among agents in the same sub-network but also among
agents from different sub-networks, where E represents the
set of edges corresponding to the information communication
among all agents in the communication network.

Definition 2.1: System (2) is said to reach consensus
asymptotically if for any initial conditions, we have:

lim
k→∞

|Ri(k)−Rj(k)| = 0, ∀i, j ∈ V.

Definition 2.2: System (2) is said to reach couple-group
consensus asymptotically if for any initial conditions, we have:

lim
k→∞

|Ri(k)−Rj(k)| = 0, ∀i, j ∈ Vk, k = 1, 2.

Assumption 2.1: we make the following assumption as in
([6],[8])

(a)
n+m∑
j=n+1

aij = 0,∀i ∈ L1; (b)
n∑
j=1

aij = 0,∀i ∈ L2.

These assumptions mean that the interaction between the two
subgroups is balanced.

The problem to be addressed in this paper is to design
consensus protocol and establish conditions under which
couple-group consensus can be achieved by applying proposed
protocol.

III. FIRST-ORDER GROUP CONSENSUS IN DIRECTED
NETWORKS

In this section, group consensus protocol will be designed
and the spectrum of the system matrix will be analyzed.

A. Group consensus protocol

To solve the group consensus problem for multi-agent
system (2), the following consensus protocol:

ui(k) =



∑
∀vj∈Ni,1

aijC(Rj(k)−Ri(k)) +
∑

∀vj∈Ni,2

aijCRj(k)

∀i ∈ L1∑
∀vj∈Ni,1

aijCRj(k) +
∑

∀vj∈Ni,2

aijC(Rj(k)−Ri(k))

∀i ∈ L2

(3)
is proposed, where C denotes the 3 × 3 rotating matrices.
aij ≥ 0, for all i, j ∈ Lk, k = 1, 2, and aij ∈ R for all
i ∈ L1, j ∈ L2 or i ∈ L2, j ∈ L1.

By applying protocol (3), the dynamics of system (2) can
be re-written as

R(k + 1) = ΦR(k) (4)

where
Φ = I + TΨ (5)

with Ψ = −L
⊗
C ,L = [lij ] is defined as

lij =

{
−aij , i 6= j,∑n+m
j=1,j 6=i aij otherwise,

(6)

i, j = 1, 2, · · · , n+m. From (5), one gets

λi(Φ) = 1 + Tλi(Ψ), i = 1, 2, · · · , 3(n+m). (7)

where λi(Φ) and λi(Ψ) are the i-th eigenvalues of Φ and
Ψ , respectively; and Φ has the same eigenvectors as Ψ. To
proceed with the analysis, we first present a necessary lemma
about L and restate its proof to derive two important vectors,
which will be used in this paper.
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Lemma 3.1: ([6]) Under Assumption 21, L has a zero
eigenvalue whose geometric multiplicity is at least two.
Proof The definition of L in (6) ensures the property that
n+m∑
j=1

lij = 0 for all i = 1, · · · , n + m. So, 0 is an eigenvalue

of L. Furthermore, one can verify that

Lqi = 0 · qi, i = 1, 2,

where
q1 = [1Tn ,0

T
m]T , q2 = [0Tn ,1

T
m]T . (8)

q1 and q2 are two linearly independent right eigenvectors of
L associated with zero eigenvalues.

B. Eigenvalues and eigenvectors of the system matrix

To find out the eigenvalues of Ψ, one needs to solve its
characteristic equation

det(λI3(n+m) −Ψ) = det(λI3(n+m) + L
⊗

C)

=

3∏
j=1

n+m∏
i=1

(λ+ µicj) = 0 (9)

λi,j(Ψ) = −µicj , i = 1, 2, · · · , n+m, j = 1, 2, 3. (10)

where λi,j(Ψ) are the eigenvalues of Ψ corresponding to µicj .
From Eqs. (9), we know that µi = 0 is equivalent to λi,j(Ψ) =
0. So, we have the following result about the relationship of
the zero eigenvalues of L and Ψ.

Lemma 3.2: Ψ has an eigenvalue 0 of multiplicity six
if and only if L has an eigenvalue 0 of multiplicity two.
the right eigenvector of Ψ associated with eigenvalue 0 is
given by q1

⊗
%l,q2

⊗
%l, and the left eigenvector given by

pT1
⊗
ρl , pT2

⊗
ρl, where l = 1, 2, 3. p1 = [pT11, p

T
12]T and

p2 = [pT21, p
T
22]T are left eigenvectors of L associated with

zero eigenvalues with pT1 q1 = 1 and pT2 q2 = 1(p11, p21 ∈
Rn, p12, p22 ∈ Rm); q1 and q2 are defined in Eq. (8).
proof By Eq. (10), if L has an eigenvalue 0 of multiplicity two,
then when j = 1, 2, 3, Ψ has an eigenvalue 0 of multiplicity
six, and the converse is also true.

Let w be a right eigenvector of Ψ corresponding to zero
eigenvalues,we have

Ψw = 03(n+m)

L
⊗

Cw = 03(n+m)

by the properties of Kronecker product, w2l−1,r =
q1
⊗
%l, w2l,r = q2

⊗
%l, l = 1, 2, 3. Suppose that p1 and p2

are left eigenvectors of L corresponding to zero eigenvalues
which satisfy pT1 q1 = 1 and pT2 q2 = 1. Similarly, it can be
proved that w2l−1,l = p1

⊗
ρl, w2l,l = p2

⊗
ρl, l = 1, 2, 3.

Remark 3.1: From Eq. (5), Φ has an eigenvalue 1 of multi-
plicity six if and only if L has an eigenvalue 0 of multiplicity
two.

Remark 3.2: From Eq. (5), Φ has an eigenvalue 1 of multi-
plicity six if and only if L has an eigenvalue 0 of multiplicity
two.

C. Main results

In this section, necessary and sufficient conditions will
be derived to solve the couple-group consensus problem for
multi-agent system (2) with fixed communication topology.

Theorem 3.1: By applying consensus protocol (3), multi-
agent system (2) achieves couple-group consensus asymp-
totically if and only if Φ has exactly an eigenvalue 1 of
multiplicity six and all the other eigenvalues lie inside the
unit circle. Furthermore, we have the following results about
the final consensus values:

|Ri(k)− pT11R1(0) + pT12R
2(0)| → 0 ∀i ∈ L1

|Ri(k)− pT21R1(0) + pT22R
2(0)| → 0 ∀i ∈ L2

as k →∞, p11, p12, p21and p22are defined in Eq.(8)
Proof (Sufficiency) Let J be the Jordan canonical for-
m of Φ, then there exists an invertible matrixP =
[w1,r, w2,r, w3,r, w4,r, w5,r, w6,r, ...] such that

P−1ΦP = J

where

J =

[
J1 06×(3(n+m)−6)

0(3(n+m)−6)×6 J2

]
, J1 = I6

J2 represents the Jordan block corresponding to the other
eigenvalues of Φ. To facilitate our analysis, we partition
P into block form such as P = [P1, P2],where P1 =
[w1,r, w2,r, w3,r, w4,r, w5,r, w6,r], P2 is the block composed
of right eigenvectors or generalized right eigenvectors cor-
responding to the other eigenvalues of Φ. In a similar way,

P−1 will be partitioned into P−1 =

[
Q1

Q2

]
where Q1 =[

w1,l w2,l w3,l w4,l w5,l w6,l

]T
, Q2 is the block

composed of left eigenvectors or generalized left eigenvectors
corresponding to the other eigenvalues of Φ. Then, we have

Φk = P1J
k
1Q1 + P2J

k
2Q2. (11)

where

P1J
k
1Q1 = P1I6Q1

=
3∑
i=1

(q1p1 + q2p2)
⊗

(%iρi)

=

[
1np

T
11 1np

T
12

1mp
T
21 1mp

T
22

]⊗ 3∑
i=1

(%iρi)

= Γ
⊗

I3

where Γ =

[
1np

T
11 1np

T
12

1mp
T
21 1mp

T
22

]
and J2 satisfies

lim
k→∞

Jk2 = 03(n+m)−6.

When the communication topology is fixed, system (15) will
evolve according to the following dynamics:

R(k + 1) = ΦkR(0)

Based on Eq. (11), we obtain that

lim
k→∞

∥∥∥∥[ R1(k)
R2(k)

]
− Γ

⊗
I3

[
R1(0)
R2(0)

]∥∥∥∥
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= lim
k→∞

∥∥∥∥Φk
[
R1(0)
R2(0)

]
− Γ

⊗
I3

[
R1(0)
R2(0)

]∥∥∥∥
= lim
k→∞

∥∥∥∥P1J
k
1Q1

[
R1(0)
R2(0)

]
− Ω

⊗
I3

∥∥∥∥ = 0

where Ω =

[
1np

T
11R

1(0) + 1np
T
12R

2(0)
1mp

T
21R

1(0) + 1mp
T
22R

2(0)

]
Therefore,

couple-group consensus is achieved asymptotically.
(Necessity) We know from Lemma 3.2 and Remark 3.1

that Φ has an eigenvalue 1 of multiplicity at least six. If
the sufficient condition does not hold, Φ has at least seven
eigenvalues whose modulus are greater than or equal to 1.
Thus, rank(Jk) > 6 holds as k → ∞. From the proof of
the sufficiency, it is obvious that couple-group consensus is
achieved if and only if

lim
k→∞

Φk →


1np

T

1mq
T

1ns
T

1mt
T

1ne
T

1mf
T


where p, q, s, t, e and f are arbitrary column vectors with

appropriate dimensions. This implies that rank(Φk) ≤ 6 as
k → ∞. Note the fact that rank(Φk)=rank(Jk), a contrary is
resulted in.

We notice that the algebraic condition in Theorem 3.1 is not
straightforward to be checked. Now, for a given communica-
tion topology, the following theorem is proposed for choosing
appropriate control parameters and sampling period to ensure
couple-group consensus.

Theorem 3.2: By applying consensus protocol (3), multi-
agent system (2) reaches couple-group consensus asymp-
totically if and only if L has exactly an eigenvalue 0 of
multiplicity two and all the other eigenvalues have positive
real parts, meanwhile for i = 3, 4, · · · , n+m,

f(T, θ, µi) = 2 cos(θ + arg(µi))− T |µi| > 0.

where µi are the non-zero eigenvalues of L.
proof From lemma 3.2, theorem 3.1, we just need to prove
λi,j(Φ) lie inside the unit circle for i = 3, 4, · · · , n+m, j =
1, 2, 3.. By (5) and (10), we can get:

λi,j(Φ) = 1− Tµicj , i = 3, 4, · · · , n+m, j = 1, 2, 3.

|λi,j(Φ)| < 1⇔ |1− Tµicj | < 1,

Equivalent to

(1− Tµicj)(1− Tµicj) < 1.

1− Tµicj − Tµicj + T 2|µi|2 < 1

T |µi|2 < µicj + µicj = 2|µi| cos(θ + arg(µi))

This completes the proof.

IV. FIRST-ORDER CONSENSUS IN DELAYED DIRECTED
NETWORKS

A. Consensus protocol
Because of the time delay, group Consensus discussion

becomes very difficult. so, in this section, we assume m = 0,
discussing the consensus of Multi-Agent Systems, The starting
point for our discussion is a continuous framework with delay
effects, which embeds both processing delay and transmission
delay describing consensus dynamics. Mathematically, we
consider the discrete evolution of n agents, xi denotes the
position of ith agent, and each agent adjusts its position
according to the position of its neighbors:
d

dt
xi(t) = T

∑
∀vj∈Ni

aijC(xj(t−τT −τP )−xi(t−τP )) (12)

where xi ∈ R3, i = 1, 2, · · · , n, aij ≥ 0 are constants for all
i, j; τP is processing delay (i.e., the time it takes agents to
process the packet data), and τT is transmission delay (i.e.,
the amount of time required to push the information from one
agent to another). In general, it costs more time for an agent to
process information than to transmit it. That is, τP > τT . To
normalize the processing delay, set t = τP s, yi(s) = xi(τP s),
we have
d

ds
yi(s) =

d

dt
xi(τP s)× τP

= TτP
∑
∀vj∈Ni

aijC[xj(τP s− τT − τP )− xi(τP s− τP )]

= TτP
∑
∀vj∈Ni

aijC[yj(s− 1− τT
τP

)− yi(s− 1)].

Then the corresponding discretization equation with unit step
size is given by following

Ri(k+1) = Ri(k)+TτP
∑
∀vj∈Ni

aijC[Rj(k−1− τT
τP

)−Ri(k−1)),

(13)
where i = 1, 2, · · · , n,Ri(k) = (r1i(k), r2i(k), r3i(k)), k =
1, 2, · · ·.

In this work, we ignore the effects of transmission delay
and consider the effects of processing delay. To this end, let
τP = τ and τT = 0 in (13), then we obtain the following
first-order difference system with processing delay:

Ri(k+1) = Ri(k)+Tτ
∑
∀vj∈Ni

aijC(Rj(k−1)−Ri(k−1)).

(14)
equipping with the initial value Ri(0) = R0

i and Ri(1) =
R1
i , i = 1, 2, · · · , n .

B. Eigenvalues and eigenvectors of the system matrix
Setting R1(k) = (R1(k), R2(k), . . . , Rn(k))T , then the

system (2) with protocol (14) can be written as

R1(k + 1) = R1(k)− Tτ(L⊗ C)R1(k − 1). (15)

Let X(k) = (R1(k), R1(k − 1))T , then the system would be
transmitted as follows:

X(k + 1) = MX(k), (16)
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where M is a 6n× 6n matrix which is given by

M =

[
I3n −TτL⊗ C
I3n 03n

]
.

On the other hand, reset X̂(k) = (R2(k) − R1(k), R3(k) −
R1(k), . . . , Rn(k) − R1(k))T , then the system (2) with pro-
tocol (14) can further be written as

X̂(k + 1) = X̂(k)− TτL̃⊗ CX̂(k − 1), (17)

where

L̃ =

 l22 − l12 · · · l2N − l1n
...

. . .
...

ln2 − l12 · · · lnn − l1n


Let X̄(k) = (X̂(k)T , X̂(k− 1)T )T , then the system (17) can
be written as follows

X̄(k + 1) = EX̄(k), (18)

where E is a 6(n− 1)× 6(n− 1) matrix as

E =

[
I3(n−1) −TτL̃⊗ C
I3(n−1) 03(n−1)

]
.

At this stage, we require some key lemmas.
Lemma 4.1: Let M be given in (16). Then 0 is an eigen-

value of L with algebraic multiplicity m if and only if 1 is an
eigenvalues of M with algebraic multiplicity 3m.

Proof. Compute

det(σI6n −M) = det

[
(σ − 1)I3n TτL⊗ C
−I3n σI3n

]
=

n∏
i=1

3∏
j=1

mij(σ) = 0 (19)

where
mij(σ) = σ2 − σ + Tτµicj .

σij,1 =
1 +

√
1− 4Tτµicj

2
, σij,2 =

1−
√

1− 4Tτµicj

2

for i = 1, 2, . . . , n, j = 1, 2, 3. Therefore, 1 is an eigenvalues
of M with algebraic multiplicity 3m if and only if L has a
zero eigenvalue with algebraic multiplicity m.

Lemma 4.2: The eigenvalues of the reduced Laplacian ma-
trix L̃ consist of the rest eigenvalues of Laplacian matrix L
except a zero eigenvalue, Moreover, M has three more 1 and
0 eigenvalues than E , and the rest eigenvalues are the same.

Proof.The first part of this lemma can be obtained from the
proof of Lemma 1 in [?]. now we prove the second part of
this lemma. By the proof of Lemma 4.1, we get that

det(σI6n −M) = det

[
(σ − 1)I3n TτL⊗ C
−I3n σI3n

]
=

n∏
i=1

3∏
j=1

σ2 − σ + Tτµicj

det(σI6n−6 − E) = det

[
(σ − 1)I3(n−1) TτL̃⊗ C
−I3(n−1) σI3(n−1)

]
=

n∏
i=2

3∏
j=1

σ2 − σ + Tτµicj (20)

This implies that M has three more eigenvalues 1 and 0 than
E, and the algebraic multiplicity of the other eigenvalues is
the same.

It is evident from the previous two lemmas that the system
(16) achieves consensus asymptotically if and only if the
system (18) is asymptotically stable.

Lemma 4.3: If 0 is a simple eigenvalue of the matrix
L, then zero is an eigenvalue of the matrix L

⊗
C with

algebraic multiplicity 3, and 1 is an eigenvalue of the ma-
trix M with algebraic multiplicity 3. Meanwhile, the right
eigenvector of M associated with eigenvalue 1 is given by(
1Tn
⊗
%Tl 1Tn

⊗
%Tl

)T
, and the left eigenvector given by(

pT
⊗
ρl 0Tn

⊗
ρl
)
, where l = 1, 2, 3.

Proof By Lemma 2.3 and Lemma 4.1, it is clear that
if L has a simple zero eigenvalue, then L

⊗
C has a zero

eigenvalue with algebraic multiplicity 3 and the matrix M has
an eigenvalue 1 with algebraic multiplicity 3.

Next, we calculate the eigenvector of the eigenvalue 1. we
assume w =

(
wTa , wTb

)T
is the right eigenvector of M ,

then

Mw =

[
I3n −TτL

⊗
C

I3n 03n×3n

] [
wa
wb

]
=

[
wa
wb

]
.

Thus, we have{
I3nwa − TτL

⊗
Cwb = wa,

I3nwa = wb.

So wb is the right eigenvectors of L
⊗
C associated with the

zero eigenvalue, and the right eigenvectors of M associated
with the eigenvalue 1 is given by(

1Tn
⊗
%Tl , 1Tn

⊗
%Tl

)T
.

The left eigenvectors can found similarly.

C. Main results

In this section, necessary and sufficient conditions will be
derived to solve the consensus problem for multi-agent system
(2) with fixed communication topology.

Theorem 4.1: By applying consensus protocol (14),multi-
agent system (2) achieves consensus if and only if the matrix
M has exactly an eigenvalue 1 with multiplicity 3 and all the
other eigenvalues lie inside the unit circle. In addition, if the
consensus is reached, we have

lim
k→∞

‖Ri(k)− pTR1(0)‖ = 0. i = 1, 2, · · · , n.

where p = (p1, p2, · · · , pn)T satisfying pT 1n = 1 is the
unique nonnegative left eigenvector of L associated with zero
eigenvalue.

Proof (Necessity) noting that 1 is the eigenvalue of matrix
M with algebraic multiplicity 3, by lemma 4.3, we see
that the corresponding right eigenvectors associated with the
eigenvalue 1 are (12n ⊗ %1), (12n ⊗ %2) and (12n ⊗ %3),
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the corresponding left eigenvectors associated with the eigen-
value 1 are (pT ⊗ ρ1,0n ⊗ ρ1), (pT ⊗ ρ2,0n ⊗ ρ2) and
(pT ⊗ ρ3,0n ⊗ ρ3). They are obviously linear independent.
So the geometric multiplicity of the eigenvalue 1 of matrix M
is 3 too. There exists a nonsingular matrix P ∈ R6n×6n, such
that

P−1MP =

[
I3 0

0 J̃

]
,

where J̃ is the diagonal matrix composed of Jordan blocks
associated with the other eigenvalues of matrix M . Thus

M =
[
ζ1, . . . , ζ6n

] [ I3 0

0 J̃

] ηT1
...
ηT6n


where ζj and ηj(j = 1, 2, . . . , 6n) are columns and rows of
P and P−1, respectively. Since the eigenvalues of matrix M
satisfy |σ| < 1 except for the eigenvalue σ1,2,3 = 1. Thus

lim
k→+∞

J̃k = 0(6n−3)×(6n−3).

noting that

lim
k→+∞

X(k) = lim
k→+∞

MkX(0)

=
(
12n ⊗ %1,12n ⊗ %2,12n ⊗ %3, . . .

)
(
I3 0

0 limk→+∞ J̃k

)
pT ⊗ ρ1 0Tn ⊗ ρ1
pT ⊗ ρ2 0Tn ⊗ ρ2
pT ⊗ ρ3 0Tn ⊗ ρ3

...

X(0)

=

3∑
i=1

((1Tn 1Tn )T ⊗ %i)((pT 0Tn )⊗ ρi)X(0)

=

(
1np

T 1n0
T
n

1np
T 1n0

T
n

)
⊗

3∑
i=1

%iρiX(0)

=

(
1np

T 1n0
T
n

1np
T 1n0

T
n

)
⊗ I3X(0).

Thus
lim

k→+∞
R1(k) = 1np

T ⊗ I3R1(0).

so the consensus value is pTR1(0), we have

lim
k→∞

‖Ri(k)− pTR1(0)‖ = 0. i = 1, 2, · · · , n.

(Sufficiency) Suppose to the contrary, if the matrix M has
exactly an eigenvalue 1 with multiplicity 3 and all the other
eigenvalues are stay in the unit disk is not satisfied, then by
Lemma 4.1, the multiplicity of 1 eigenvalue in M is at least 3
since L has a zero eigenvalue at least. Hence, there are three
cases needed to be discussed:

Case I: The multiplicity of 1 eigenvalue in M is 3, and there
exists at least an eigenvalue which is not in the unit disk;

Case II: The multiplicity of 1 eigenvalue in M is more than
3, and the rest eigenvalues are in the unit disk;

Case III: The multiplicity of 1 eigenvalue in M is more
than 3, and there exists at least an eigenvalue which is not in
the unit disk.

For Case I, by Lemma 4.2, if M has an eigenvalue which
is not in the unit circle, then E also has an eigenvalue which

is not in the unit circle. Therefore, the stability of system (18)
cannot be achieved, which means that the consensus of system
(16) cannot be achieved. Similarly, we can prove Case II and
Case III. This completes the proof.

As the same with Theorem 3.1 and Theorem 3.2. Now,
for a given communication topology, the following theorem
is proposed for choosing appropriate control parameters and
sampling period to ensure consensus.

Theorem 4.2: By applying consensus protocol (14),multi-
agent system (2) achieves consensus asymptotically if and
only if the digraph G has a directed spanning tree and all
the other eigenvalues have positive real parts, meanwhile for
i = 2, 3, · · · , n,{

g1(T, τ, θ, µi) = cos(θ + argµi)− Tτ |µi| > 0

g2(T, τ, θ, µi) = cos(θ + argµi)− 3Tτ |µi|−T 3τ3|µi|3
2 > 0

(21)
Proof (Sufficiency) It follows from Theorem 4.1 that if

multi-agent system (2) with the protocol (14) achieves asymp-
totical consensus, then 1 is an eigenvalue of matrix M with
algebraic multiplicity three and and all the other eigenvalues
lie inside the unit circle. By Lemma 4.1 and Lemma 2.1,
matrix L has a simple zero eigenvalue, which implies that
G has a directed spanning tree.

Meanwhile, considering the characteristic equation (20), by
applying the bilinear transformation s = σ+1

σ−1 to mij , we get
a series of new polynomials

fi(s) = (s− 1)2((
s+ 1

s− 1
)2 − s+ 1

s− 1
+ Tτµicj)

= s2Tτµicj + 2s(1− Tτµicj) + 2 + Tτµicj .

Define γi(s) (i = 2, 3, · · · , n) as

γi(s) =
fi(s)

Tτµicj
= s2 + (

2

ι
− 2)s+ (

2

ι
+ 1), (22)

where ι = Tτµicj .
noting that the properties of bilinear function, we see that

all roots of (20) are inside the unit disk if and only if all
roots of γi(s) = 0 have negative real parts for i = 2, 3, · · · , n.
Let a1 + b1j = 2

ι − 2, a2 + b2j = 2
ι + 1, then we see that

b1 = b2, a1 = a2 − 3. It follows from Lemma 2.4 that all
roots of γi(s) = 0 have negative real parts if and only if

a1 > 0, a21(a1 + 3) + a1b
2
1 − b21 > 0.

noting the fact that

a1 = <(
2

Tτµicj
− 2) = <(

2µicj
Tτ |µi|2

− 2)

=
2 cos(θ + argµi)

Tτ |µi|
− 2 > 0

if and only if

cos(θ + argµi)− Tτ |µi| > 0

Also, by direct calculation, we get

a21 + b21 = (
2

ι
− 2)(

2

ι
− 2) = 4(

1

|ι|2
+ 1− 2<(ι)

|ι|2
)

= 4(
1

T 2τ2|µi|2
+ 1− 2 cos(θ + argµi)

Tτ |µi|
)
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and

a21 = 4(
cos(θ + argµi)

Tτ |µi|
− 1)2.

It follows from

a21(a1 + 3) + a1b
2
1 − b21 > 0

that

(a1 − 1)(a21 + b21) + 4a21 > 0.

This implies that

cos(θ + argµi)−
3Tτ |µi| − T 3τ3|µi|3

2
> 0

Hence the sufficiency.
(necessity)if θ satisfy (21), we have that all the roots of

(20) stay inside the unit disk for each i = 2, 3, · · · , n. It
implies that the eigenvalues of M are lie inside the unit
circle except eigenvalue 1. Since the digraph G contains a
directed spanning tree, we have that the Laplacian matrix L
has a simple zero-eigenvalue. By Lemma 4.2, 1 is not the
eigenvalue of matrix E, but 1 is the eigenvalue of matrix M
with algebraic multiplicity three. By Theorem 4.1, system (16)
achieves consensus asymptotically. This completes the proof
of Theorem 4.2.

V. SIMULATION EXAMPLES

A. Couple-group consensus of a multi-agent system with di-
rected topology

Consider a multi-agent system (2) applying consensus pro-
tocol (3) with directed topology, where

L =



1 −1 0 5 0 −4 −1
−2 3 −1 −1 0 0 1
0 −2 2 0 −3 0 3
1 −1 0 2 0 0 −2
1 −1 0 −1 1 0 0
2 −1 −1 0 −1 1 0
−1 1 0 −2 0 −1 3


numerical computation shows that L has eigenvalues
µ1 = 0, µ2 = 0, µ3 = 0.4840 + 2.6710i, µ4 = 0.4840 −
2.6710i, µ5 = 6.5046, µ6 = 3.5427, µ7 = 1.9847,from
Theorem 3.1,Φ has an eigenvalue 1 of multiplicity
six and the rest eigenvalues modulus are less than
1,the final consensus values (1.5341, 2.5341, 3.5341) for
i ∈ L1,(13.4273, 14.4273, 15.4273) for i ∈ L2,from
Theorem 3.2,f(0.01, 5, µi) > 0, for i = 3, 4, · · · , 7.
Evolutions of the position states of all agents are shown
in Fig. 1, where R1(0) = [1, 2, 3, 4, 5, 6, 7, 8, 9],R2(0) =
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], Couple-group
consensus is achieved as guaranteed by theory. The
position states of all agents are shown in Fig. 2, where
f(0.01, 10, µ3) < 0 and the initial conditions are the same as
which in Fig. 1. Couple-group consensus of the multi-agent
system cannot be reached.
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Fig. 1. x, y, z position states of all agents, where θ = 5 degree, T = 0.01.
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Fig. 2. x, y, z position states of all agents, where θ = 10 degree, T = 0.01.

B. consensus of a multi-agent system with delay directed
topology

Consider a multi-agent system (2) applying consensus pro-
tocol (14) with directed topology, where

L =


2 −1 0 −1
0 3 −1 −2
−1 −4 5 0
−1 0 −3 4

 (23)

numerical computation shows that L has eigenvalues µ1 =
0, µ2 = 5.7869 + 2.1051j, µ3 = 5.7869 − 2.1051j and µ4 =
2.4262, from Theorem 3.1,M has an eigenvalue 1 of multiplic-
ity six and the rest eigenvalues modulus are less than 1,the final
consensus values (2.4565 4.5326 4.2500), for i ∈ L, from
Theorem 3.2, g1(0.04, 3, π4 , µi) > 0, g2(0.04, 3, π4 , µi) > 0 for
i = 2, 3, 4. Evolutions of the position states of all agents are
shown in Fig. 3, where R1(0) = [2, 3, 5, 2, 8, 2, 2, 2, 2, 4, 3, 9],
consensus is achieved as guaranteed by theory. The po-
sition states of all agents are shown in Fig. 4, where
g2(0.043, 3, π4 , µ2) < 0 and the initial conditions are the same
as which in Fig. 3. consensus of the multi-agent system cannot
be reached.

VI. CONCLUSION

In this paper, couple-group consensus and dalay consensus
problem for discrete-time first-order multi-agent systems is
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Fig. 3. x, y, z position states of all agents, where θ = π
4
, T = 0.04.
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Fig. 4. x, y, z position states of all agents, where θ = π
4
, T = 0.043.
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investigated for networks with fixed communication topology.
Consensus protocol is designed and some necessary and suf-
ficient conditions are established to ensure first-order couple-
group consensus and consensus with delay. It is found that
couple-group consensus and dalay consensus will be reached
only if the nonzero eigenvalues of the Laplacian matrix all
have positive real parts. Simulation examples are presented to
demonstrate the effectiveness of the theoretical results.
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